92 research outputs found

    Non-Destructive Testing of Carbon Fiber Crank Arms

    Get PDF
    Carbon fiber components present unique challenges for detecting defects, damage, and fatigue. Nondestructive methods exist for testing and locating defects. However, most of these methods are expensive, not versatile enough for practical use on non-idealized parts, or both. Vibrothermography can be an affordable option and has shown promising results with thin rectangular panels. The goal of this senior project was to assess the feasibility of using vibrothermography to find defects in SRAM carbon fiber crank arms. Our team found vibrothermography to be a feasible method of non-destructive testing for carbon fiber crank arms, and this report discusses the development and implementation of the necessary theory, fixturing, and testing procedures

    Bayesian analysis of weak gravitational lensing and Sunyaev-Zel'dovich data for six galaxy clusters

    Get PDF
    We present an analysis of observations made with the Arcminute Microkelvin Imager (AMI) and the Canada-France-Hawaii Telescope (CFHT) of six galaxy clusters in a redshift range of 0.16--0.41. The cluster gas is modelled using the Sunyaev--Zel'dovich (SZ) data provided by AMI, while the total mass is modelled using the lensing data from the CFHT. In this paper, we: i) find very good agreement between SZ measurements (assuming large-scale virialisation and a gas-fraction prior) and lensing measurements of the total cluster masses out to r_200; ii) perform the first multiple-component weak-lensing analysis of A115; iii) confirm the unusual separation between the gas and mass components in A1914; iv) jointly analyse the SZ and lensing data for the relaxed cluster A611, confirming our use of a simulation-derived mass-temperature relation for parameterizing measurements of the SZ effect.Comment: 22 pages, 12 figures, 12 tables, published by MNRA

    Untangling the drivers of energy reduction in the UK productive sectors: Efficiency or offshoring?

    Get PDF
    The UK has been one of the few countries that has successfully decoupled final energy consumption from economic growth over the past 15 years. This study investigates the drivers of final energy consumption in the UK productive sectors between 1997 and 2013 using a decomposition analysis that incorporates two novel features. Firstly, it investigates to what extent changes in thermodynamic efficiency have contributed to overall changes in sectoral energy intensities. Secondly, it analyses how much of the structural change in the UK economy is driven by the offshoring of energy-intensive production overseas. The results show that energy intensity reductions are the strongest factor reducing energy consumption. However, only a third of the energy savings from energy intensity reductions can be attributed to reductions in thermodynamic efficiency with re- ductions in the exergy intensity of production making up the reminder. In addition the majority of energy savings from structural change are a result of offshoring, which constitutes the second biggest factor reducing energy consumption. In recent years the contributions of all decomposition factors have been declining with very little change in energy consumption after 2009. This suggests that a return to the strong reductions in energy consumption observed between 2001 and 2009 in the UK productive sectors should not be taken for granted. Given that further reductions in UK final energy consumption are needed to achieve global targets for climate change mitigation, additional policy interventions are needed. Such policies should adopt a holistic approach, taking into account all sectors in the UK economy as well as the relationship between the structural change in the UK and in the global supply chains delivering the goods and service for consumption and investment in the UK

    Predicting reliability through structured expert elicitation with the repliCATS (Collaborative Assessments for Trustworthy Science) process

    Get PDF
    As replications of individual studies are resource intensive, techniques for predicting the replicability are required. We introduce the repliCATS (Collaborative Assessments for Trustworthy Science) process, a new method for eliciting expert predictions about the replicability of research. This process is a structured expert elicitation approach based on a modified Delphi technique applied to the evaluation of research claims in social and behavioural sciences. The utility of processes to predict replicability is their capacity to test scientific claims without the costs of full replication. Experimental data supports the validity of this process, with a validation study producing a classification accuracy of 84% and an Area Under the Curve of 0.94, meeting or exceeding the accuracy of other techniques used to predict replicability. The repliCATS process provides other benefits. It is highly scalable, able to be deployed for both rapid assessment of small numbers of claims, and assessment of high volumes of claims over an extended period through an online elicitation platform, having been used to assess 3000 research claims over an 18 month period. It is available to be implemented in a range of ways and we describe one such implementation. An important advantage of the repliCATS process is that it collects qualitative data that has the potential to provide insight in understanding the limits of generalizability of scientific claims. The primary limitation of the repliCATS process is its reliance on human-derived predictions with consequent costs in terms of participant fatigue although careful design can minimise these costs. The repliCATS process has potential applications in alternative peer review and in the allocation of effort for replication studies

    Post-load glucose subgroups and associated metabolic traits in individuals with type 2 diabetes:An IMI-DIRECT study

    Get PDF
    AIM: Subclasses of different glycaemic disturbances could explain the variation in characteristics of individuals with type 2 diabetes (T2D). We aimed to examine the association between subgroups based on their glucose curves during a five-point mixed-meal tolerance test (MMT) and metabolic traits at baseline and glycaemic deterioration in individuals with T2D. METHODS: The study included 787 individuals with newly diagnosed T2D from the Diabetes Research on Patient Stratification (IMI-DIRECT) Study. Latent class trajectory analysis (LCTA) was used to identify distinct glucose curve subgroups during a five-point MMT. Using general linear models, these subgroups were associated with metabolic traits at baseline and after 18 months of follow up, adjusted for potential confounders. RESULTS: At baseline, we identified three glucose curve subgroups, labelled in order of increasing glucose peak levels as subgroup 1-3. Individuals in subgroup 2 and 3 were more likely to have higher levels of HbA1c, triglycerides and BMI at baseline, compared to those in subgroup 1. At 18 months (n = 651), the beta coefficients (95% CI) for change in HbA1c (mmol/mol) increased across subgroups with 0.37 (-0.18-1.92) for subgroup 2 and 1.88 (-0.08-3.85) for subgroup 3, relative to subgroup 1. The same trend was observed for change in levels of triglycerides and fasting glucose. CONCLUSIONS: Different glycaemic profiles with different metabolic traits and different degrees of subsequent glycaemic deterioration can be identified using data from a frequently sampled mixed-meal tolerance test in individuals with T2D. Subgroups with the highest peaks had greater metabolic risk

    PRMT3 inhibitor SGC707 reduces triglyceride levels and induces pruritus in Western-type diet-fed LDL receptor knockout mice

    Get PDF
    Protein arginine methyltransferase 3 (PRMT3) is a co-activator of liver X receptor capable of selectively modulating hepatic triglyceride synthesis. Here we investigated whether pharmacological PRMT3 inhibition can diminish the hepatic steatosis extent and lower plasma lipid levels and atherosclerosis susceptibility. Hereto, male hyperlipidemic low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet and injected 3 times per week intraperitoneally with PRMT3 inhibitor SGC707 or solvent control. Three weeks into the study, SGC707-treated mice developed severe pruritus and scratching-associated skin lesions, leading to early study termination. SGC707-treated mice exhibited 50% lower liver triglyceride stores as well as 32% lower plasma triglyceride levels. Atherosclerotic lesions were virtually absent in all experimental mice. Plasma metabolite analysis revealed that levels of taurine-conjugated bile acids were ~ threefold increased (P < 0.001) in response to SGC707 treatment, which was paralleled by systemically higher bile acid receptor TGR5 signalling. In conclusion, we have shown that SGC707 treatment reduces hepatic steatosis and plasma triglyceride levels and induces pruritus in Western-type diet-fed LDL receptor knockout mice. These findings suggest that pharmacological PRMT3 inhibition can serve as therapeutic approach to treat non-alcoholic fatty liver disease and dyslipidemia/atherosclerosis, when unwanted effects on cholesterol and bile acid metabolism can be effectively tackled
    corecore